29 research outputs found

    Detection of curved lines with B-COSFIRE filters: A case study on crack delineation

    Full text link
    The detection of curvilinear structures is an important step for various computer vision applications, ranging from medical image analysis for segmentation of blood vessels, to remote sensing for the identification of roads and rivers, and to biometrics and robotics, among others. %The visual system of the brain has remarkable abilities to detect curvilinear structures in noisy images. This is a nontrivial task especially for the detection of thin or incomplete curvilinear structures surrounded with noise. We propose a general purpose curvilinear structure detector that uses the brain-inspired trainable B-COSFIRE filters. It consists of four main steps, namely nonlinear filtering with B-COSFIRE, thinning with non-maximum suppression, hysteresis thresholding and morphological closing. We demonstrate its effectiveness on a data set of noisy images with cracked pavements, where we achieve state-of-the-art results (F-measure=0.865). The proposed method can be employed in any computer vision methodology that requires the delineation of curvilinear and elongated structures.Comment: Accepted at Computer Analysis of Images and Patterns (CAIP) 201

    Leaf segmentation in plant phenotyping: a collation study

    Get PDF
    Image-based plant phenotyping is a growing application area of computer vision in agriculture. A key task is the segmentation of all individual leaves in images. Here we focus on the most common rosette model plants, Arabidopsis and young tobacco. Although leaves do share appearance and shape characteristics, the presence of occlusions and variability in leaf shape and pose, as well as imaging conditions, render this problem challenging. The aim of this paper is to compare several leaf segmentation solutions on a unique and first-of-its-kind dataset containing images from typical phenotyping experiments. In particular, we report and discuss methods and findings of a collection of submissions for the first Leaf Segmentation Challenge of the Computer Vision Problems in Plant Phenotyping workshop in 2014. Four methods are presented: three segment leaves by processing the distance transform in an unsupervised fashion, and the other via optimal template selection and Chamfer matching. Overall, we find that although separating plant from background can be accomplished with satisfactory accuracy (>>90 % Dice score), individual leaf segmentation and counting remain challenging when leaves overlap. Additionally, accuracy is lower for younger leaves. We find also that variability in datasets does affect outcomes. Our findings motivate further investigations and development of specialized algorithms for this particular application, and that challenges of this form are ideally suited for advancing the state of the art. Data are publicly available (online at http://​www.​plant-phenotyping.​org/​datasets) to support future challenges beyond segmentation within this application domain

    Fast Retinal Vessel Detection and Measurement Using Wavelets and Edge Location Refinement

    Get PDF
    The relationship between changes in retinal vessel morphology and the onset and progression of diseases such as diabetes, hypertension and retinopathy of prematurity (ROP) has been the subject of several large scale clinical studies. However, the difficulty of quantifying changes in retinal vessels in a sufficiently fast, accurate and repeatable manner has restricted the application of the insights gleaned from these studies to clinical practice. This paper presents a novel algorithm for the efficient detection and measurement of retinal vessels, which is general enough that it can be applied to both low and high resolution fundus photographs and fluorescein angiograms upon the adjustment of only a few intuitive parameters. Firstly, we describe the simple vessel segmentation strategy, formulated in the language of wavelets, that is used for fast vessel detection. When validated using a publicly available database of retinal images, this segmentation achieves a true positive rate of 70.27%, false positive rate of 2.83%, and accuracy score of 0.9371. Vessel edges are then more precisely localised using image profiles computed perpendicularly across a spline fit of each detected vessel centreline, so that both local and global changes in vessel diameter can be readily quantified. Using a second image database, we show that the diameters output by our algorithm display good agreement with the manual measurements made by three independent observers. We conclude that the improved speed and generality offered by our algorithm are achieved without sacrificing accuracy. The algorithm is implemented in MATLAB along with a graphical user interface, and we have made the source code freely available

    Retinal Vascular Fractal Dimension, Childhood IQ, and Cognitive Ability in Old Age: The Lothian Birth Cohort Study 1936

    Get PDF
    <div><p>Purpose</p><p>Cerebral microvascular disease is associated with dementia. Differences in the topography of the retinal vascular network may be a marker for cerebrovascular disease. The association between cerebral microvascular state and non-pathological cognitive ageing is less clear, particularly because studies are rarely able to adjust for pre-morbid cognitive ability level. We measured retinal vascular fractal dimension (<i>D</i><sub><i>f</i></sub>) as a potential marker of cerebral microvascular disease. We examined the extent to which it contributes to differences in non-pathological cognitive ability in old age, after adjusting for childhood mental ability.</p><p>Methods</p><p>Participants from the Lothian Birth Cohort 1936 Study (LBC1936) had cognitive ability assessments and retinal photographs taken of both eyes aged around 73 years (<i>n</i> = 648). IQ scores were available from childhood. Retinal vascular <i>D</i><sub><i>f</i></sub> was calculated with monofractal and multifractal analysis, performed on custom-written software. Multiple regression models were applied to determine associations between retinal vascular <i>D</i><sub><i>f</i></sub> and general cognitive ability (<i>g</i>), processing speed, and memory.</p><p>Results</p><p>Only three out of 24 comparisons (two eyes × four <i>D</i><sub><i>f</i></sub> parameters × three cognitive measures) were found to be significant. This is little more than would be expected by chance. No single association was verified by an equivalent association in the contralateral eye.</p><p>Conclusions</p><p>The results show little evidence that fractal measures of retinal vascular differences are associated with non-pathological cognitive ageing.</p></div
    corecore